

2016

STATISTISCHE BERICHTE

Bestimmte klimawirksame Stoffe 201)

Zeichenerklärungen

- 2 Zahl ungleich Null, Betrag jedoch kleiner als die Hälfte von 1 in der letzten ausgewiesenen Stelle
- nichts vorhanden
- . Zahl unbekannt oder geheim

Einzelwerte in Tabellen werden im Allgemeinen ohne Rücksicht auf die Endsumme gerundet.

Abkürzungen

CO₂ Kohlendioxid

FCKW vollhalogenierte Fluorchlorkohlenwasserstoffe H-FCKW teilhalogenierte Fluorchlorkohlenwasserstoffe

Abweichungen in den Summen erklären sich aus dem Runden der Einzelwerte.

Inhalt

Glossa	r	6
Tabelle	n	
	T 1 Verwendung bestimmter klimawirksamer Stoffe 2005–2015 nach Stoffgruppen	7
	T 2 Verwendung bestimmter klimawirksamer Stoffe 2005–2015 nach Verwendungsarten	8
	T 3 Verwendung bestimmter klimawirksamer Stoffe 2005–2015 nach Wirtschaftszweigen	9
Grafike	n	
	G 1 Verwendung bestimmter klimawirksamer Stoffe 2005–2015 nach ausgewählten Verwendungsarten	7
	G 2 Verwendung bestimmter klimawirksamer Stoffe 2015 nach Verwendungsarten	8
	G 3 Verwendung bestimmter klimawirksamer Stoffe in den Jahren 2005 und 2015 nach Wirtschaftszweigen	9
Anhang		
	Ü 1 Bestimmte klimawirksame Stoffe und deren Blends	0

Informationen zur Statistik

Ziel der Statistik

Die jährliche Erhebung über bestimmte klimawirksame Stoffe gibt einen Überblick über die Verwendung sowie die Einund Ausfuhr von Fluorderivaten der aliphatischen und cyclischen Kohlenwasserstoffe mit bis zu zehn Kohlenstoffatomen. Die Stoffe werden insbesondere als Kältemittel, Treibmittel in Aerosolerzeugnissen und bei der Verschäumung von Kunst- und Schaumstoffen sowie als Löse- und Löschmittel verwendet. Die Ergebnisse werden zur Darstellung des Emissionspotenzials dieser Stoffe benötigt. Zu den Hauptnutzern dieser Erhebung zählen das Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit sowie das Umweltbundesamt. Dieses nutzt die Daten aus der Erhebung zur Erstellung des Nationalen Inventarberichtes, einer Berichterstattung unter der Klimarahmenkonvention der Vereinten Nationen und dem Kyoto-Protokoll an die Europäische Kommission.

Rechtsgrundlage

Umweltstatistikgesetz (UStatG) vom 16. August 2005 (BGBI. I S. 2446), das zuletzt durch Artikel 6 des Gesetzes vom 28. Juli 2015 (BGBI. I S. 212) geändert worden ist, in Verbindung mit dem Bundesstatistikgesetz (BStatG) vom 22. Januar 1987 (BGBI. I S. 462, 565), das zuletzt durch Artikel 13 des Gesetzes vom 25. Juli 2013 (BGBI. I S. 2749) geändert worden ist. Erhoben werden die Angaben zu § 10 Absatz 1 UStatG.

Erhebungsumfang

Die Erhebung über bestimmte klimawirksame Stoffe ist eine Primärerhebung, die auf Unternehmensebene durchgeführt wird. Erhoben werden Angaben über die Verwendung von Fluorderivate der aliphatischen und cyclischen Kohlenwasserstoffe mit bis zu zehn Kohlenstoffatomen.

Regionale Ebene

Die Erhebung der Daten erfolgt auf Unternehmensebene. Die regionale Zuordnung erfolgt nach dem Unternehmensstandort, d. h. auch bei Unternehmen mit Betrieben in mehreren Bundesländern werden die Angaben in dem Bundesland, in dem sich der Unternehmenssitz befindet, nachgewiesen. Fachlich und wirtschaftssystematisch tief gegliederte Ergebnisse werden auf Landesebene veröffentlicht.

Berichtskreis

Die Erhebung wird bei Unternehmen durchgeführt, die bestimmte klimawirksame Stoffe (Fluorderivate der aliphatischen und cyclischen Kohlenwasserstoffe mit bis zu zehn Kohlenstoffatomen) herstellen bzw. in Mengen von mehr als 20 kg pro Stoff und Jahr zur Herstellung, Instandhaltung, Wartung oder Reinigung von Erzeugnissen verwenden.

Zur Vervollständigung des Berichtskreises werden Unternehmen, die die genannten Stoffe in Mengen von unter 20 kg pro Stoff einsetzen, ebenfalls jährlich nach der Verwendung dieser Stoffe befragt. Sie werden bei der Darstellung der Ergebnisse nicht berücksichtigt. Zusätzlich werden Unternehmen in Wirtschaftszweigen, in denen die genannten Stoffe üblicherweise Verwendung finden, in regelmäßigen Abständen in die Erhebung einbezogen.

Erhebungsmerkmale und Berichtszeitraum

Die Erhebung erfasst jährlich für das Vorjahr bei Unternehmen, die Fluorderivate der aliphatischen und cyclischen Kohlenwasserstoffe mit bis zu zehn Kohlenstoffatomen herstellen, ein- oder ausführen oder in Mengen von mehr als 20 Kilogramm pro Stoff und Jahr zur Herstellung, Instandhaltung, Wartung oder Reinigung von Erzeugnissen verwenden, die Erhebungsmerkmale Art und Menge der Stoffe als solche oder in Zubereitungen.

Vergleichbarkeit

Ab Berichtsjahr 2006 wurde die untere Erfassungsgrenze von 50 kg pro Stoff und Jahr auf 20 kg reduziert.

Besondere fachliche Hinweise

Ab dem Berichtsjahr 2015 wird die Erhebung auf Fluorderivate mit bis zu zehn Kohlenstoffatomen ausgedehnt.

Die Mengen der Stoffe werden bei den Berichtspflichtigen in Kilogramm erfasst und später in Tonnen und in CO2-Äquivalenten (GWP-Wert) Tonnen umgerechnet. Das GWP (Global Warming Potential = Treibhauspotenzial) gibt das Treibhauspotenzial eines Stoffes an und damit seinen Beitrag zur Erwärmung der bodennahen Luftschicht. Treibhausgase verfügen über ein unterschiedliches Erderwärmungspotenzial, das sogenannte "Global Warming Potential" (GWP). Als Richtgröße dient die Klimawirksamkeit von Kohlendioxid (GWP von CO2 = 1), d. h. die Treibhauspotenziale anderer Stoffe bemessen sich relativ zu CO2. Die Umrechnungsfaktoren werden in größeren zeitlichen Abständen vom Umweltbundesamt überprüft und bei Bedarf angepasst. Letztmalig war dies für das Berichtsjahr 2013 der Fall. Eine rückwirkende Anpassung der errechneten CO2-Äquivalente erfolgt nicht. Ein Verzeichnis der in die Erhebung einbezogenen Stoffe sowie deren für das aktuelle Berichtsjahr festgelegte CO2-Äquivalent enthält die Stoffliste (Ü1).

Glossar

Ausgangsstoffe

Stoffe, die zur Herstellung anderer chemischer Erzeugnisse bestimmt sind und dabei vollständig vernichtet oder umgewandelt werden. Sie werden als nicht emissionsrelevant angesehen.

Bestimmte klimawirksame Stoffe

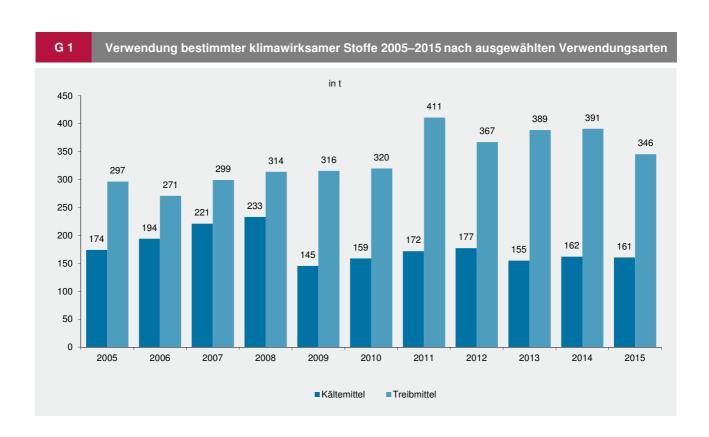
Als klimawirksame Stoffe gelten ausschließlich Fluorderivate der aliphatischen und cyclischen Kohlenwasserstoffe mit bis zu zehn Kohlenstoffatomen mit den allgemeinen Summenformeln C_nF_{2n+2} mit $n=1,\,2,\,...,\,6$ (perfluorierte Alkane – FKW) und $C_nH_mF_{2n+2-m}$ mit $n=1,\,2,\,...,\,6$ und 0< m<2n+2 (teilfluorierte Alkane – H-FKW).

Zu den klimawirksamen Stoffen zählen nicht Kohlenwasserstoffe wie z. B. Propan (R 290), Butan (R 600) und anorganische Stoffe wie Ammoniak (R 717), Wasser (R 718) und Kohlendioxid (R 744).

Blends

Blends sind Gemische oder Zubereitungen aus zwei oder mehr Stoffen, die mindestens einen klimawirksamen Stoff enthalten. Sie werden als Ersatzstoffe für die verbotenen FCKW – vorwiegend als Kältemittel – eingesetzt. Die GWP-Werte/CO₂-Äquivalente der Blends werden aus den in ihnen enthaltenen Stoffen ermittelt.

FKW (vollhalogenierte Fluorkohlenwasserstoffe) und H-FKW (teilhalogenierte Fluorkohlenwasserstoffe)

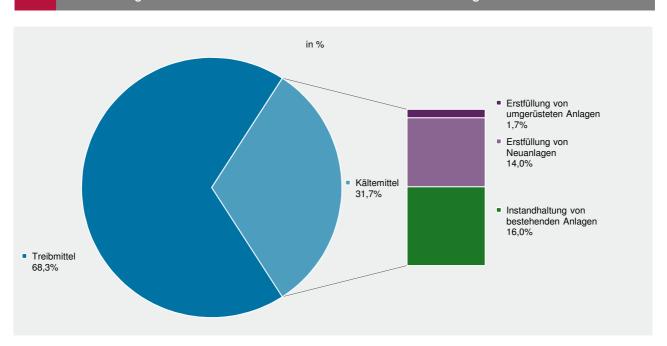

Die Fluorkohlenwasserstoffe gelten als klimawirksame Stoffe. Sie besitzen keine ozonschichtschädigende Wirkung. Sie werden in vollhalogenierte (FKW) und teilhalogenierte Fluorkohlenwasserstoffe (H-FKW) unterschieden. Die FKW sind Kohlenwasserstoffe, deren Wasserstoffatome vollständig durch Fluoratome ersetzt sind. H-FKW sind Kohlenwasserstoffe, deren Wasserstoffatome teilweise durch Fluoratome ersetzt sind. Sie besitzen sehr unterschiedliche GWP-Werte/CO₂-Äquivalente und tragen zur Erwärmung, d. h. zum sogenannten Treibhauseffekt, bei.

GWP/CO₂-Äquivalente (Global Warming Potential)

Treibhausgase verfügen über ein unterschiedliches Erwärmungspotenzial, das sogenannte "Global Warming Potential" (GWP). Als Richtgröße dient die Klimawirksamkeit von Kohlendioxid (GWP von CO₂ = 1), d. h. die Treibhauspotenziale anderer Stoffe bemessen sich relativ zu CO₂. Der GWP-Wert/das CO₂-Äquivalent gibt das Treibhauspotenzial eines Stoffes an und damit seinen Beitrag zur Erwärmung der bodennahen Luftschichten.

T 1 Verwendung bestimmter klimawirksamer Stoffe 2005–2015 nach Stoffgruppen

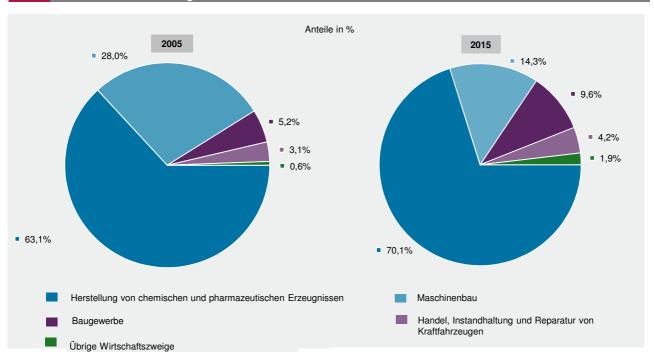
Jahr	Insgesamt	FKW, H-FKW	Blends					
	t							
2005	475,9	412,6	63,3					
2006	468,2	400,1	68,1					
2007	520,3	431,2	89,1					
2008	547,0	452,8	94,2					
2009	461,2	379,9	81,3					
2010	478,7	386,3	92,4					
2011	582,6	483,7	98,9					
2012	544,3	439,4	104,8					
2013	543,4	451,8	91,6					
2014	553,1	456,9	96,2					
2015	506,2	414,6	91,6					
	Treib	hauspotenzial 1 000 t CO ₂ -Äquivalente						
2005	714,3	565,3	149,0					
2006	707,0	542,2	164,8					
2007	782,4	574,3	208,1					
2008	809,1	588,8	220,3					
2009	691,0	494,2	196,8					
2010	722,2	502,7	219,5					
2011	867,4	631,4	236,1					
2012	823,9	571,5	252,4					
2013	907,7	647,8	259,9					
2014	929,2	657,0	272,2					
2015	844,6	594,6	250,0					



T 2 Verwendung bestimmter klimawirksamer Stoffe 2005–2015 nach Verwendungsarten

				Als Kältemittel				Als sonst	iges Mittel	
				Erstfüllung						
Jahr	Jahr	Insgesamt	insgesamt	zusammen	von Neuanlagen	von um- gerüsteten Anlagen	Instand- haltung von bestehenden Anlagen	Als Treibmittel ¹	insgesamt	als Ausgangs- stoff
					t					
2005	475,9	174,0	126,6	124,0	2,6	47,4	296,5	5,4	-	
2006	468,2	194,0	134,5	129,6	4,9	59,4	270,8	3,4	-	
2007	520,3	221,1	163,0	159,6	3,4	58,1	299,2	-	-	
2008	547,0	232,9	177,4	171,4	6,1	55,5	314,0	0,0	-	
2009	461,2	145,5	77,5	70,4	7,1	68,0	315,7	-	-	
2010	478,7	158,7	85,5	76,1	9,3	73,3	319,9	-	-	
2011	582,6	171,7	100,0	91,4	8,6	71,7	410,9	-	-	
2012	544,3	177,2	102,6	93,7	8,9	74,6	367,1	-	-	
2013	543,4	154,8	84,7	76,8	8,0	70,0	388,6	-	-	
2014	553,1	162,0	88,5	79,8	8,6	73,6	391,1	-	-	
2015	506,2	160,7	79,7	71,1	8,6	81,0	345,5	-	-	
			Tre	ibhauspotenzial	1 000 t CO ₂ -Äq	uivalente				
2005	714,3	293,9	205,6	200,6	5,0	88,2	385,5	34,9	-	
2006	707,0	332,9	218,9	208,3	10,6	114,1	352,2	21,9	-	
2007	782,4	393,4	273,5	266,4	7,1	119,9	389,0	-	-	
2008	809,1	400,7	299,3	286,3	13,0	101,4	408,2	0,3	-	
2009	691,0	280,6	154,4	138,6	15,9	126,2	410,4	-	-	
2010	722,2	306,3	167,5	146,3	21,2	138,7	415,9	-	-	
2011	867,4	333,2	193,4	173,4	19,9	139,8	534,2	-	-	
2012	823,9	346,7	202,5	181,8	20,7	144,3	477,2	-	-	
2013	907,7	352,0	198,6	175,7	22,9	153,3	555,7	-	-	
2014	929,2	370,0	197,1	176,0	21,1	172,9	559,2	-	-	
2015	844,6	350,5	170,3	149,5	20,8	180,2	494,1	-	-	

¹ Bei der Herstellung von Kunst- und Schaumstoffen sowie Aerosolen.


G 2 Verwendung bestimmter klimawirksamer Stoffe 2015 nach Verwendungsarten

Verwendung bestimmter klimawirksamer Stoffe 2005–2015 nach Wirtschaftszweigen

Jahr	Insgesamt	Verarbeitendes Gewerbe	Baugewerbe	Handel, Instandhaltung und Reparatur von Kraftfahrzeugen	Sonstige Wirtschafts- zweige		
t							
2004	449,0	398,4	34,0	14,8	1,7		
2005	475,9	434,9	24,8	14,7	1,5		
2006	468,2	419,6	26,7	20,5	1,4		
2007	520,3	470,4	30,0	18,5	1,3		
2008	547,0	492,2	35,7	17,7	1,3		
2009	461,2	406,5	35,5	17,9	1,2		
2010	478,7	420,3	37,1	19,9	1,5		
2011	582,6	517,8	43,9	19,5	1,4		
2012	544,3	471,6	51,2	19,4	2,0		
2013	543,4	474,1	46,6	20,8	1,9		
2014	553,1	481,3	49,9	19,6	2,3		
2015	506,2	435,6	48,4	21,1	1,1		
		Treibhauspoten	nzial 1 000 t CO ₂ -Äquivalente				
2004	701,1	608,0	70,1	20,6	2,4		
2005	714,3	638,1	53,8	20,4	1,9		
2006	707,0	617,5	60,8	26,9	1,8		
2007	782,4	685,9	70,5	24,2	1,8		
2008	809,1	699,2	84,9	23,1	1,7		
2009	691,0	585,7	80,3	23,4	1,6		
2010	722,2	610,9	83,5	25,9	2,0		
2011	867,4	736,2	103,9	25,4	1,9		
2012	823,9	674,8	120,2	25,2	3,6		
2013	907,7	748,3	126,0	30,6	2,7		
2014	929,2	767,5	130,0	28,1	3,6		
2015	844,6	689,8	123,2	30,0	1,6		

Verwendung bestimmter klimawirksamer Stoffe in den Jahren 2005 und 2015 nach Wirtschaftszweigen

	Stoff	STKZ ¹	Chemische Bezeichnung/ Handelsbezeichnung	Summenformel	CO ₂ - Äquivalente ²
			FKW		
R	14	9501	: Tetrafluormethan	CF₄	7 39
R	116	9506	: Hexafluorethan	C2F6	12 20
R	216	9510	: Hexafluorcyclopropan	c-C₃F ₆	17 34
R	218	9511	: Oktafluorpropan	C3F8	8 83
R	318	9512	: Octafluorcyclobutan	c-C4F8,	10 30
R	3-1-10	9516	: Decafluorbutan	C4F10	8 86
R	4-1-12	9521	: Dodecafluorpentan	C5F12	9 16
R	5-1-14	9526	: Tetradecafluorhexan	C6F14	9 30
R	9 -1-18	9528	: Perfluordecalin	C10F18	7 50
R	1316	9529	: Hexafluor-1,3-butadien	CF2=CF-CF=CF2	
			H-FKW		
R	23	9601	: Trifluormethan	CHF₃	14 80
R	32	9603	: Difluormethan	CH ₂ F ₂	67
R	41	9605	: Fluormethan	CH ₃ F	9
R	125	9605	: Pentafluorethan	CHF ₂ -CF ₃	3 50
R	134	9607	: 1,1,2,2-Tetrafluorethan	CHF ₂ -CF ₃ CHF ₂ -CHF ₂	1 10
R	134a	9611	: 1.1.1.2-Tetrafluorethan	CF ₃ -CH ₂ F	1 4
R	143	9613	: 1,1,2-Trifluorethan	CHF ₂ -CH ₂ F	3!
			* * *	CH ₃ CF ₃	
R	143a	9615	: 1,1,1-Trifluorethan	CH ₃ CF ₃ CH ₃ F-CH ₃ F	4 47
R	152	9616	: 1,2-Difluorethan		
R	152a	9617	: 1,1-Difluorethan	CH ₃ -CHF ₂ CH ₃ -CH ₂ F	1:
R	161	9619	: Fluorethan	V -	
R	227ea	9623	: 1,1,1,2,3,3,3-Heptafluorpropan	CF₃CHFCF₃	3 22
R	236cb	9627	: 1,2,2,3,3,3-Hexafluorpropan	CH ₂ FCF ₂ CF ₃	1 34
R	236ea	9629	: 1,1,2,3,3,3-Hexafluorpropan	CHF ₂ CHFCF ₃	1 37
R	236fa	9631	: 1,1,1,3,3,3-Hexafluorpropan	CF ₃ -CH ₂ -CF ₃	98
R	245ca	9633	: 1,1,2,2,3-Pentafluorpropan	CHF ₂ CF ₂ CH ₂ F	69
R	245fa	9637	: 1,1,3,3,3-Pentafluorpropan ("Enovate")	CHF ₂ CH ₂ CF ₃	1 03
R	43-10mee	9670	.1,1,1,2,2,3,4,5,5,5-Decafluorpentan Vertel XF	CF ₃ CF ₂ CHFCHFCF ₃	1 6
R	365mfc	9671	: 1,1,1,3,3-Pentafluorbutan	CF ₃ CH ₂ CF ₂ CH ₃	7:
R	1234yf	9673	: 2,3,3,3,-Tetrafluorprop-1-en ("Opteon YF")	CH ₂ =CF-CF ₃	
R	1234ze (E)	9675	: trans-1,3,3,3-Tetrafluorprop-1-en ("HBA-1")	CHF=CH-CF ₃	
R	1336mzz	9680	: 1,1,1,4,4,4,-Hexafluorbut-2-en	CF ₃ CH=CH-CF ₃	
			Blends		
			: Suva HP 62 (Suva 404A), Reclin 404A,	R 125 (CHF ₂ -CF ₃): 44%	Ī
R	404 A	9801	Forane FX 70 (Forane 404A, Meforex M 55,	R 134a (CF ₃ -CH ₂ F): 4%	3 92
			Solkane 404A, Isceon 404 A, Klea 404A	R 143a (CH ₃ CF ₃): 52%	
				R 32 (CH ₂ F ₂): 20%	
R	407 A	9804	: Klea 407A (Klea60), Isceon 407A, Suva 407A	R 125 (CHF ₃ -CF ₂): 40%	2 10
				R 134a (CF ₃ -CH ₂ F): 40%	
			: Reclin 407C, HX 3, Forane 407C,	R 32 (CH ₂ F ₂): 23%	
R	407 C	9810	Suva AC 9000 (Suva 407C), Klea 407C (Klea 66), Meforex M 95, Isceon 407C,	R 125 (CHF ₂ -CF ₃): 25%	17
			Solkane 407C	R 134a (CF ₃ -CH ₂ F): 52%	
			Solikatie 407G	R 32 (CH ₂ F ₂): 15%	
R	407 D	9811	: Klea 407D	R 125 (CHF ₂ -CF ₃): 15%	1 6
				R 134a (CF ₃ -CH ₂ F): 70%	
				R 32 (CH ₂ F ₂): 30%	
R	407 F	9814	: Genetron Performax LT	R 125 (CHF ₂ -CF ₃): 30%	18
				R 134a (CF ₃ -CH ₂ F): 40%	
			: Genetron AZ 20, Solkane 410A, Reclin 410,	R 32 (CH ₂ F ₂): 50%	
R	410 A	9813	Suva 410A, Meforex M 98, Klea 410A,	R 125 (CHF ₂ -CF ₃): 50%	2 08
	1		Forane 410A	11 123 (OI II 2-OI 3). 30 /0	

CO₂ - Äquivalente -Faktor: Treibhauspotenzial eines Stoffes entsprechend der gleichen Menge (Masse) CO₂ Kohlenstoffdioxid CO₂ - Äquivalente -Faktor = 1 STKZ -Stoffkennziffer. – 2 CO2-Äquivalente nach IPCC 2007: laut Beschlüssen in Durban verbindlich gültig ab dem Berichtsjahr 2013 für die Emissionsberichterstattung (Post-Kyoto); (Quelle: IPCC 4th Assessment Report, Climate Change 2007).

Stoff	STKZ ¹	Chemische Bezeichnung/ Handelsbezeichnung	Summenformel	CO ₂ - Äquivalente ²			
noch: Blends							
R 413 A	9819	: Isceon MO49	R 134a (CH ₂ -CF ₃ F): 88% R 218 (C ₃ F ₈): 9% R 600a (CH(CH ₃) ₃): 3%	2 053			
R 417 A	9849	: Isceon MO59	R 125 (CHF ₂ -CF ₃): 46,6% R 134a (CH ₂ -CF ₃ F): 50% R 600 (CH ₃ CH ₂ CH ₂ CH ₃): 3,4%	2 346			
R 417 B	9850	: Solkane 22L (Solvay)	R 125 (CHF ₂ -CF ₃): 79% R 134a (CH ₂ F-CF ₃): 18,3% R 600 (CH ₃ -CH ₂ -CH ₂ -CH ₃): 2,7%	3 027			
R 417 C	9847		R 125 (CHF2-CF3): 19,5% R 134a (CH2F-CF3): 78,8% R 600 (CH3-CH2-CH2-CH3): 1,7%	1 809			
R 419 B	9848		R 125 (CHF2-CF3): 48,5% R 134a (CF3-CH2F): 48% RE170 (CH3-O-CH3): 3,5%	2 384			
R 422 A	9866	: Isceon MO79	R 125 (CHF ₂ -CF ₃): 85,1% R 134a (CF ₃ -CH ₂ F): 11,5% R 600a (CH(CH ₃) ₃): 3,4%	3 143			
R 422 C	9871		R 125 (CHF ₂ -CF ₃): 82% R 134a (CF ₃ -CH ₂ F): 15% R 600a (CH(CH ₃) ₃): 3%	3 085			
R 422 D	9867	: Isceon MO29	R 125 (CHF ₂ -CF ₃): 65,1% R 134a (CF ₃ -CH ₂ F): 31,5% R 600a (CH(CH ₃) ₃): 3,4%	2 729			
R 422 E	9872		R 125 (CHF2CF3): 58% R 134a (CF3-CH2F): 39,3% R 600a (CH(CH3)3): 2,7%	2 592			
R 423 A	9802	: Isceon 39TC	R 134a (CF ₃ -CH ₂ F): 52,5% R 227ea (CF ₃ CHFCF ₃): 47,5%	2 280			
R 425 A	9873		R 32 (CH2F2): 18,5% R 134a (CF3-CH2F): 69,5% R 227ea (CF3-CHF-CF3): 12%	1 505			
R 426 A	9836		R 134a (CF3-CH2F): 93% R 600 (CH3-CH2-CH2-CH3): 1,3% R 601a (CH3-CH(CH3)-CH2-CH3):	1 508			
R 427 A	9840	: Forane FX100 (Forane 427A)	R 32 (CH ₂ F ₂): 15% R 125 (CHF ₂ -CF ₃): 25% R 134a (CF ₃ -CH ₂ F): 50% R 143a (CH ₃ CF ₃): 10%	2 138			
R 428 A	9844	: RS-52	R 125 (CHF ₂ -CF ₃): 77,5% R 143a (CH ₃ -CF ₃): 20% R 290 (CH ₃ -CH ₂ -CH ₃): 0,6% R 600a (CH(CH ₃) ₃): 1,9%	3 607			
R 429 A	9874		R 152a (CHF2-CH3): 10% R E170 (CH3-O-CH3): 60% R 600a (CH(CH3)3): 30%	14			
R 430 A	9851		R 152a (CHF2-CH3): 76% R 600a (CH(CH3)3): 24%	95			
R 431 A	9852		R 152a (CHF2-CH3): 29% R 290 (CH3-CH2-CH3): 71%	38			
R 434 A	9845	: RS-45	R 125 (CHF ₂ -CF ₃): 63,2% R 143a (CH ₃ -CF ₃): 18% R 134a (CF ₃ -CH ₂ F): 16% R 600a (CH(CH ₃) ₃): 2,8%	3 245			
R 435 A	9853	R 152a (CHF2-CH3): 20% R E170 (CH3-O-CH3): 80%	R 152a (CHF2-CH3): 20% R E170 (CH3-O-CH3): 80%	26			

 CO_2 - Äquivalente -Faktor: Treibhauspotenzial eines Stoffes entsprechend der gleichen Menge (Masse) CO_2 Kohlenstoffdioxid CO_2 - Äquivalente -Faktor = 1 STKZ -Stoffkennziffer. – 2 CO_2 -Äquivalente nach IPCC 2007: laut Beschlüssen in Durban verbindlich gültig ab dem Berichtsjahr 2013 für die Emissionsberichterstattung (Post-Kyoto); (Quelle: IPCC 4th Assessment Report, Climate Change 2007).

Bestimmte klimawirksame Stoffe und deren Blends

Stoff	STKZ ¹	Chemische Bezeichnung/ Handelsbezeichnung	Summenformel	CO ₂ - Äquivalente ²		
noch: Blends						
R 437 A	9841	: Isceon MO49Plus	R 125 (CHF ₂ CF ₃): 19,5% R 134a (CF ₃ -CH ₂ F): 78,5% R 600 (CH ₃ CH ₂ CH ₂ CH ₃): 1,4% R 601 (CH ₃ CH ₂ CH ₂ CH ₂ CH ₃): 0,6%	1 805		
R 438 A	9842	: Isceon MO99	H 32 (CH ₂ F ₂): 8,5% R 125 (CHF ₂ -CF ₃): 45% R 134a (CF ₃ -CH ₂ F): 44,2% R 600 (CH ₃ CH ₂ CH ₂ CH ₃): 1,7% R 601a (CH ₂ CH(CH ₂)CH ₂ CH ₃): 0.6%	2 265		
R 439 A	9854		R 32 (CH2F2): 50% R 125 (CHF2-CF3): 47% R 600a (CH(CH3)3): 3%	1 983		
R 440 A	9856		R 134a (CF3-CH2F): 1,6%R 152a (CHF2-CH3): 97,8%R 290 (CH3-CH2- CH3): 0,6%	144		
R 442 A	9857	: RS 50	R 32 (CH2F2): 31% R 125 (CHF2-CF3): 31% R 134a (CF3-CH2F): 30% R 152a (CHF2-CH3): 3% R 227ea (CF3-CHF-CF3): 5%	1 888		
R 444 A	9859	: Mexichem AS5	R 32 (CH2F2): 12% R 152a (CHF2-CH3): 5% R 1234ze (E) (CF3-CH=CHF(E)): 83%	93		
R 444 B	9860	: Solstice L-20	R 32 (CH2F2): 41,5% R 152a (CHF2-CH3): 10% R 1234ze (E) (CF3-CH=CHF(E)): 48,5%	296		
R 445 A	9875	: Mexichem AS6	R 134a (CF3-CH2F): 9% R 1234ze (E) (CF3-CH=CHF(E)): 85% R 744 (CO2): 6%	135		
R 446 A	9876		R 32 (CH2F2): 68% R 1234ze (E) (CHF=CH-CF3(E)): 29% R 600 (CH3-CH2-CH2-CH3): 3%	461		
R 447 A	9877	: Solstice L-41	R 32 (CH2F2): 68% R 125 (CHF2-CF3): 3,5% R 1234ze (E) (CHF=CH-CF3(E)): 28,5%	563		
R 448 A	9878	: Solstice L-40	R 32 (CH2F2): 26% R 125 (CHF2-CF3): 26% R 134a (CF3-CH2F): 21% R 1234yf (CH2=CF-CF3): 20% R 1234ze (E) (CHF=CH-CF3(E)): 7%	1 387		
R 449 A	9879	: Opteon XP40	R 32 (CH2F2): 24,3% R 125 (CHF2-CF3): 24,7% R 134a (CF3-CH2F): 25,7% R 1234yf (CH2=CF-CF3): 25,3%	1 397		
R 450 A	9880	: Solstice L-13	R 1234ze (E) (CHF=CH-CF3(E)): 58% R 134a (CF3-CH2F): 42%	605		
R 451 A	9881		R 1234yf (CH2=CF-CF3): 89,8% R 134a (CF3-CH2F): 10,2%	149		
R 451 B	9882		R 1234yf (CH2=CF-CF3): 88,8% R 134a (CF3-CH2F): 11,2%	164		
R 452 A	9883	: Opteon XP44	R 32 (CH2F2): 11% R 125 (CHF2-CF3): 59% R 1234yf (CH2=CF-CF3): 30%	2 140		
R 507 A	9822	: Suva 507, AZ 50, Solkane 507, Klea 507, Reclin 507, Forane 507, Meforex M 57, Isceon 507	R 125 (CHF ₂ -CF ₃): 50% R 143a (CH ₃ CF ₃): 50%	3 985		
R 508 A	9825	: Klea 508A (R5R3)	R 23 (CHF ₃): 39% R 116 (C2F ₆): 61%	13 214		

CO₂ - Äquivalente -Faktor: Treibhauspotenzial eines Stoffes entsprechend der gleichen Menge (Masse) CO₂ Kohlenstoffdioxid CO₂ - Äquivalente -Faktor = 1 1 STKZ -Stoffkennziffer. – 2 CO2-Äquivalente nach IPCC 2007: laut Beschlüssen in Durban verbindlich gültig ab dem Berichtsjahr 2013 für die Emissionsberichterstattung (Post-Kyoto); (Quelle: IPCC 4th Assessment Report, Climate Change 2007).

Bestimmte klimawirksame Stoffe und deren Blends

	Stoff	STKZ ¹	Chemische Bezeichnung/ Handelsbezeichnung	Summenformel	CO ₂ - Äquivalente ²	
noch: Blends						
R	508 B	9828	: Suva 95	R 23 (CHF ₃): 46% R 116 (C ₂ F ₆): 54%	13 396	
R	511 A	9832		R 152a (CH3-CHF2): 5% R 290 (CH3-CH2-CH3): 95%	3	
R	512 A	9833		R 134a (CF3-CH2F): 5% R 152a (CHF2-CH3): 95%	189	
R	513 A	9838	Opteon XP10	R 1234yf (CH2=CF-CF3): 56% R 134a (CF3-CH2F): 44%	631	
	Isceon 89	9846	: Isceon MO 89	R 125 (CHF ₂ CF ₃): 86% R 218 (C ₃ F ₈): 99% R 290 (H ₃ C-CH ₂ -CH ₃): 5%	3 805	
R	1234yf / R 134a Gemisch	9870	: Opteon XP 10	R 1234yf (CH ₂ =CF-CF ₃): 54% R 134a (CF ₃ -CH ₂ F): 46%	660	
	365 mfc/ R 227ea Gemisch 1	9862	: Solkane 365/227 93/7	R 227ea (CF ₃ CHFCF ₃): 7% R 365 mfc (CF ₃ CH ₂ CF ₂ CH ₃): 93%	964	
	365 mfc/ R 227ea Gemisch 2	9863	: Solkane 365/227 87/13	R 227ea (CF ₃ CHFCF ₃): 13% R 365 mfc (CF ₃ CH ₂ CF ₂ CH ₃₎ : 87%	1 109	

CO₂ - Äquivalente -Faktor: Treibhauspotenzial eines Stoffes entsprechend der gleichen Menge (Masse) CO₂ Kohlenstoffdioxid CO₂ - Äquivalente -Faktor = 1 STKZ -Stoffkennziffer. – 2 CO2-Äquivalente nach IPCC 2007: laut Beschlüssen in Durban verbindlich gültig ab dem Berichtsjahr 2013 für die Emissionsberichterstattung (Post-Kyoto); (Quelle: IPCC 4th Assessment Report, Climate Change 2007).

Impressum

Herausgeber: Statistisches Landesamt Rheinland-Pfalz Mainzer Straße 14-16 56130 Bad Ems

Telefon: 02603 71-0 Telefax: 02603 71-3150

E-Mail: poststelle@statistik.rlp.de Internet: www.statistik.rlp.de

Kostenfreier Download im Internet: http://www.statistik.rlp.de/veroeffentlichungen/statistische-berichte

© Statistisches Landesamt Rheinland-Pfalz · Bad Ems · 2016

Vervielfältigung und Verbreitung, auch auszugsweise, mit Quellenangabe gestattet.